By Published On: March 9, 2022

Cypress, California (December 2021) —A group of researchers including Professor Hiroki Oge of Hiroshima University Hospital’s Department of Infectious Diseases and Professor Takemasa Sakaguchi of the Virology Department of Hiroshima University’s Graduate School of Biomedical and Health Sciences recently evaluated the effect of irradiating the Delta variant of SARS-CoV-2 using Ushio’s Care222® filtered far UVC disinfection* technology.1 This is part of joint research conducted by Hiroshima University and Ushio Inc. (head office: Tokyo; President and Chief Executive Officer: Koji Naito; hereinafter “Ushio”). The research is titled: “Study on the disinfection and viral inactivation effects of 222 nm UV-C light using Care222.” The research showed that 222 nm UV-C light is equally effective in inactivating the Delta variant as in inactivating the original SARS-CoV-2 strain.

Outline

In this research study, a group consisting of Assistant Professor Hiroki Kitagawa, Assistant Professor Toshihito Nomura, and Professor Hiroki Oge of Hiroshima University Hospital’s Department of Infectious Diseases as well as Professor Takemasa Sakaguchi of the Virology Department of Hiroshima University’s Graduate School of Biomedical and Health Sciences used a unit equipped with Ushio’s filtered far UV-C disinfection technology “Care222®,” which combines an excimer lamp with a central wavelength of 222 nm and a special optical filter that removes harmful wavelengths, to irradiate a SARS-CoV-2 Delta variant. The study demonstrated that the Care222 far UV-C light is as effective against the Delta variant as it is against the original strain of COVID-19 and N501Y variants.2

Background

In a past study, this research group was the first in the world to demonstrate that a unit with Ushio’s Care222 light technology inactivates the original strain of SARS-CoV-21) and that the inactivation effect of UV-C light with a central wavelength of 222 nm on SARS-CoV-2 depends on cumulative illuminance regardless of lighting method (continuous, intermittent, etc.).2) The group also reported that 222 nm UV-C light would inactivate N501Y variants as effectively as it inactivates the original SARS-CoV-2 strain.3)

COVID-19 infections are currently increasing due to multiple variants of SARS-SoV-2. According to an internal document from the U.S. Center for Disease Control, the basic reproduction number (R0) indicating how many people a single patient may infect ranged between two and three for the original strains, whereas it ranged between five and nine for the Delta variant, the same level as the chickenpox.4) The hospitalization rate of patients with the Delta variants is reported to be double the hospitalization rate of patients with the Alpha variant.5) Further, laboratory testing revealed that the Delta variant has greater resistance to neutralizing antibodies compared to the original strain of the virus, even in patients who have received two doses of a vaccine. This suggests a possible decrease in the vaccine’s efficacy.6) At the same time, it is believed to be possible to predict the amount of UV-C light needed to inactivate the virus.7) The SARS-CoV-2 variants have mutations in some parts of the genome that occur during copying and proliferation that do not significantly affect the genome size or base composition that determines sensitivity to UV-C light.8) As such, researchers speculated that sensitivity to inactivation by 222 nm UV-C should not differ between the original strains and variants. The researchers had already shown that irradiation with 222 nm light inactivated the N501Y variants as effectively as it inactivated the original strain, as initially believed. The next step was to evaluate the effect of 222 nm UV-C light in inactivating the Delta variant.

Therefore, Ushio conducted a joint research project with researchers from Hiroshima University Hospital’s Department of Infectious Diseases and the Virology Department of Hiroshima University’s Graduate School of Biomedical and Health Sciences to verify that irradiation with UV-C light with 222 nm wavelength would inactivate the Delta variant equally effectively.

Evaluation contents and results

A whole-genome analysis was performed on SARS-CoV-2 clinical isolates, and the WHO confirmed that the isolates were the B.1.617.2 Delta variant. The variant, first identified in India, is categorized as “variant of concern.” We evaluated the effect of 222 nm UV-C light in the inactivation of these isolates.

For each of the SARS-CoV-2 variants, a 5 μL of viral liquid was dripped onto a plastic petri dish, which was then irradiated with 222 nm UV-C light at 2, 4 and 6 mJ/cm2. Viral infectivity after ultraviolet ray irradiation was evaluated using the TCID50 method to evaluate the viral inactivation effects at the different illuminances compared with the infectivity of non-irradiated samples (n = 2). As initially estimated, 222 nm ultraviolet rays were shown to be as effective at inactivating the Delta variant as the original strain of the virus (see the figure and table below).

My Lumens Artemis Far UVC Disinfection Device equipped with Care222 far uvc light, could continuously disinfect in occupied space but harmless to skin and eyes of human.

UV-C light has been used for pathogen disinfection, water treatment, air conditioning, and disinfecting objects for more than a century. The amount of UV exposure necessary for inactivating microorganisms varies, but no known microorganisms have acquired UV-C resistance. So far, it has been demonstrated that the SARS-CoV-2 Delta variant is as sensitive to 222 nm UV-C light as the other variants.

*All references to “disinfection” are referring generally to the reduction of pathogenic bioburden and are not intended to refer to any specific definition of the term as may be used for other purposes by the U.S. Food and Drug Administration or the U.S. Environmental Protection Agency.

1Variant

In general, viruses with slightly different genome sequences appear through processes of copying and proliferation. These viruses with different genome sequences are called variants, and some variants will be more infectious or cause more severe symptoms due to the genome sequence changes.

2See Ushio’s press release titled “Research Confirms Ushio’s Care222® Far UV-C Technology Is Effective Against a Variant of SARS-CoV-2, the Virus That Causes COVID-19“ https://www.ushio.com/research-confirms-ushios-care222-far-uv-c-technology-is-effective-against-a-variant-of-sars-cov-2-the-virus-that-causes-covid-19/

References

  • Kitagawa, H., Nomura, T., Nazmul, T., Omori, K., Shigemoto, N., Sakaguchi, T., & Ohge, H. (2020). Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. American Journal of Infection Control, 49.
    https://doi.org/10.1016/j.ajic.2020.08.022
  • Kitagawa, H., Nomura, T., Nazmul, T., Kawano, R., Omori, K., Shigemoto, N., Sakaguchi, T., & Ohge, H. (2021). Effect of intermittent irradiation and fluence-response of 222 nm ultraviolet light on SARS-CoV-2 contamination.Photodiagnosis and Photodynamic Therapy, 33.
    https://doi.org/10.1016/j.pdpdt.2021.102184
  • Research Confirms Ushio’s Care222 Far UV-C Technology Is Effective Against a Variant of SARS-CoV-2, the Virus That Causes COVID-19https://www.ushio.co.jp/jp/news/1002/2021-2021/500814.html
  • https://context-cdn.washingtonpost.com/notes/prod/default/documents/8a726408-07bd-46bd-a945-3af0ae2f3c37/note/57c98604-3b54-44f0-8b44-b148d8f75165.#page=1
  • Twohig, K. A., Nyberg, T., Zaidi, A., Thelwall, S., Sinnathamby, M. A., Aliabadi, S., Seaman, S. R., Harris, R. J., Hope, R., Lopez-Bernal, J., Gallagher, E., Charlett, A., & De Angelis, D. (2021). Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(21)00475-8
  • Samarakoon, U., Alvarez-Arango, S., & Blumenthal, K. G. (2021). Delayed Large Local Reactions to mRNA Covid-19 Vaccines in Blacks, Indigenous Persons, and People of Color. New England Journal of Medicine, 385. https://doi.org/10.1056/nejmc2108620
  • Blatchley, E., Brenner, D., Claus, H., Cowan, T., Linden, K., Liu, Y., Mao, T., Park, S. J., Piper, P., Simons, R., Sliney, D., (May, 12 2021). Far UV-C Radiation: Current State-of Knowledge. The International Ultraviolet Association.
    https://iuva.org/resources/covid-19/Far%20UV-C%20Radiation-%20Current%20State-of%20Knowledge.pdf
  • Pendyala, B., Patras, A., Pokharel, B., & D’Souza, D. (2020). Genomic Modeling as an Approach to Identify Surrogates for Use in Experimental Validation of SARS-CoV-2 and HuNoV Inactivation by UV-C Treatment. Frontiers in Microbiology, 11(September). https://doi.org/10.3389/fmicb.2020.572331
Follow us

Join our team

Join us today and unleash your full potential as a copywriter.

Join us today
Latest articles
  • Revolutionizing Pet Industry Hygiene Standards with Mysoter® Far UVC 222nm Sterilizer As pet owners, we understand how crucial it is to ensure a clean and healthy environment for our furry companions. With the constant risk of bacteria and viruses, proper disinfection practices have become a top priority in the pet industry. Fortunately, the industry is now entering a new era of hygiene standards with the introduction of far uvc 222nm technology. Far uvc 222nm technology is a revolutionary breakthrough in the field of disinfection. This type of ultraviolet light technology uses shorter wavelengths to penetrate and deactivate pathogens, including bacteria and viruses. Unlike higher wavelength UV methods, far uvc 222nm technology poses minimal risks to humans and pets, making it a safer alternative for use in the pet industry. The potential of far uvc 222nm technology in the pet industry is immense. Traditional disinfection methods, such as chemical sprays and wipes, may cause harm to pets' health and the environment. In contrast, far uvc disinfection machines ensure a thorough and efficient cleaning process that is safe for pets. Not only does it clean and disinfect floors and surfaces, but it can also sanitize toys, crates, and other equipment, minimizing the risk of contagion. Far uvc disinfection machines have the potential to revolutionize the pet industry's hygiene standards. They can be used in a wide range of pet-related establishments such as veterinary clinics, shelters, grooming salons, and pet stores. They can also be used in homes to ensure a clean and healthy environment for pets. The benefits of far uvc 222nm technology in the pet industry go beyond cleanliness. It can also provide a safer and more efficient disinfection process for pet owners and professionals, reducing the spread of diseases and infections. With the pandemic still affecting the world, properly maintaining hygiene standards has become more critical than ever. In conclusion, the introduction of Mysoter® far uvc 222nm technology in the pet industry marks a new era of hygiene standards. It is a safe, efficient, and versatile solution that can help reduce the risk of infections and diseases for pets, owners, and professionals. Its potential extends to other industries such as healthcare, hospitality, and food processing, and the possibilities are endless. As businesses and individuals strive to maintain proper hygiene practices, Mysoter® far uvc disinfection devices are becoming a must-have in the pet industry.
    Revolutionizing Pet Industry Hygiene Standards with Mysoter® Far UVC 222nm Sterilizer As pet owners, we understand how crucial it is to ensure a clean and healthy environment for our furry companions. With the constant risk of bacteria and viruses, proper disinfection practices have become a top priority in the pet industry. Fortunately, the industry is now entering a new era of hygiene standards with the introduction of far uvc 222nm technology. Far uvc 222nm technology is a revolutionary breakthrough in the field of disinfection. This type of ultraviolet light technology uses shorter wavelengths to penetrate and deactivate pathogens, including bacteria and viruses. Unlike higher wavelength UV methods, far uvc 222nm technology poses minimal risks to humans and pets, making it a safer alternative for use in the pet industry. The potential of far uvc 222nm technology in the pet industry is immense. Traditional disinfection methods, such as chemical sprays and wipes, may cause harm to pets' health and the environment. In contrast, far uvc disinfection machines ensure a thorough and efficient cleaning process that is safe for pets. Not only does it clean and disinfect floors and surfaces, but it can also sanitize toys, crates, and other equipment, minimizing the risk of contagion. Far uvc disinfection machines have the potential to revolutionize the pet industry's hygiene standards. They can be used in a wide range of pet-related establishments such as veterinary clinics, shelters, grooming salons, and pet stores. They can also be used in homes to ensure a clean and healthy environment for pets. The benefits of far uvc 222nm technology in the pet industry go beyond cleanliness. It can also provide a safer and more efficient disinfection process for pet owners and professionals, reducing the spread of diseases and infections. With the pandemic still affecting the world, properly maintaining hygiene standards has become more critical than ever. In conclusion, the introduction of Mysoter® far uvc 222nm technology in the pet industry marks a new era of hygiene standards. It is a safe, efficient, and versatile solution that can help reduce the risk of infections and diseases for pets, owners, and professionals. Its potential extends to other industries such as healthcare, hospitality, and food processing, and the possibilities are endless. As businesses and individuals strive to maintain proper hygiene practices, Mysoter® far uvc disinfection devices are becoming a must-have in the pet industry.

    February 29, 2024

  • Far-UV Technology
    Far-UV Technology

    February 29, 2024

  • February 29, 2024

  • February 29, 2024

  • February 29, 2024

  • February 29, 2024

  • February 29, 2024

  • February 29, 2024

Share this article